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Calculation of the determinantD @) of system (6.5) by using /9/ yields the following 
values for Y = 0.3, which ensure that the system is solvable D (~~,)~O.~g~,D (&) z 0.5876, 
L) f&)~ 0.1498, D (&af ;=: -0.3359 + O.3283i. 

The presence of an imaginary part in $r3 and & shows that the contact forces in the 
last two problems contain oscillatory factors in addition to non-integrable singularities. 
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ON THE INVERSE PROBLEM OF THE SCATTERING OF 
ELASTIC WAVES BY A THIN FOREIGN INCLUSION* 

V.F.YEMETS 

The problem of the remote determination of the shape of an isolated scatterer 
is considered using longitudinal elastic waves. It is assumed that the 
scatterer is a thin elastic solid of revolution situated in an elastic 
space under conditions of rigid contact and that Poisson's ratios of the 
medium and the scatterer are the same. The use of multifrequency wave 
information is a special feature of the solution of the problem. The 
problems of the uniqueness and stability of the solution obtained are also 
studied. 

We mean by the inverse scattering problem the problem of determining 
the form of the scattering region by analysing the scattered field. The 
problem, as a rule, is one of a number of ill-posed problems of mathematical 
physics /l/. The current interest in developments in this direction is 
caused by the practical needs experienced in such fields as acoustic 
diagnostics, geophysics, hydroacoustics, medicine, etc. At present 
several approaches to the study of the form of closed isolated scatterers 
are known /2--4,'. Here the corresponding direct problem of mathematical 
physics was formulated as a boundary value problem for the Helmholtz 
equation with Dirichlet boundary conditions and Newmann or impedance 
boundary conditions on the unknown surface of the body whose location was 
being determined. 

*Prikl.~4atem.Mekhan.,50,2,303-308,1986 
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The present paper uses the method given in /5/ to solve the problem 

of determining the form of a thin elastic solid of revolution using the 

experimentally known scattering amplitude of longitudinal displacement 

waves specified on a discrete set of the sounding frequencies in a fixed 

direction in space. It is assumed here that Poisson's ratios of the 
medium and the solid in question are the same, and the solid is in rigid 

contact with the elastic medium. 

1. Let a space filled with an isotropic elastic medium with Lam6 coefficients h, p of 

density p, contains a foreign inclusion D,, bounded by a smooth closed surface S and character- 

ized by the Lams coefficients hi,. pi and density pr, in rigid contact with the medium. We 

assume that a plane longitudinal displacement wave arriving from infinity impinges on the body 

D* 

u"(x) = AJ exp Iior (1, x)1 (1-V 

Here and henceforth A, is the amplitude of the incoming wave, l= (I,, I,, Z3) is its direction 
of propagation, (0, 0) denotes a scalar product, CT, CL are the rates Of propagation Of the 
transverse and longitudinal waves, m is the frequency, x = (zi, r,, z8) is the radius vector of 
any point of the space originating in D,, the time multiplier exp(--ior) is omitted, and 

mA = mcA-r, A = L, T. 

If up(x) is the scattered field displacement vector, then the problem of determining the 

field u(x) with components u](x) = Us" -/- ujp(x)(j = 1,2,3) under the condition h,p =Ip,, is 
equivalent to solving the functional Eq.(6) 

sc-'(x)u(x)=u~(x)+Q~[u](x), XER’ (1.2) 

Q" bl (4 = sipo” 5 urn (Y) rm tx, Y) dy + 
D 

62 5 Ui (y) nj (y) (h aryF’ ” ( 
ari (Xv Y) 

-6Sij+P - 
m awi + 

arj (7 Y) 
aWi >P 44 

f, XE RS\D, 

x-1 (x) = i = 2-162, x E s 

i---z, XED 

where dS, is the area element of the surface S at the point y= (~7, y,, y*), m=(s,,n,,n,) is 

the direction of the external normal to S,6,,(i,j=l,2,3) is the Kronecker delta, ri is a 
vector with components I'ri, lYsi;rli; and repeated indices denote summation. We also have 

rij fx, Y) = 
e=PZrJ L; I’ II hij _ 

w-’ c exP~ioLtx-Y~I-exp~~T~~-~~] 
-qq 4x IX-Y1 

6, = PIP-’ - PIP-‘, & = 1 - pip-‘9 dy = dy,rly,dy, 

and the field up(x) satisfies the Sommerfeld radiation condition. We shall write this 
condition in the form 

up (x) = -(4nR)-lA_z T exp [iwAR] fA (a; 1, v) + 0 (R*) 

(R=~z~-+co) 

(1.3) 

where fL, IT are the scattering amplitudes of the longitudinal and transverse waves and v= 
x 1 x 1-l is the direction ofthevector x. 

Then from (1.2), (1.3) we obtain 

fL(m;l,v)= -v &oL* 
1 s 

(v,u)exp[- ion@, y)] dy - 

& & % W, n) 1 l2~ b. nb, @I ew I- SOL (v, Y)I dS,) 

fT (0; 1, V) = - (Sj - Wj) (6lCOT’i’ljeXp [- imT (V, y)] dy - 

0.4) 

(1.5) 

~oT&S [(n, V) Uj + nj (u, v)] exP [- Ian (V, Y)] dsv (i = iv% 3) 
s 
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where 6j is a vector with components 6j1,6j,,6j,. 

The question now arises, how, using the experimentally known scattering amplitude of the 

longitudinal and transverse waves specified in a fixed spatial direction at a discrete set of 

frequencies, we can determine the surface S, while possessing some a priori information 
about its shape. 

Mathematically, the inverse problem in question reduces to that of determining the surface 

S from the systems of functional equations obtained from (l.Z), (1.4) or (1.2)‘ (1.5) with 

0 = or, 08, f . *, orf. The latter problem cannot, in general, be solved exactly. any attempt 

to solve it approximately must be based on some restrictions imposed on the properties of the 

scatterer and on the frequence range of the sounding field. The latter is dictated by the 
need to have an approximate solution of the direct problem, i.e. an approximate solution of 
(1.2), available. 

It can be shown that if we have the inequality 

0.6) 

where M is a constant, then a solution of (1.2) with XC? D, exists in the Banach space 
C (D,) of functions continuous on D,, is unique, and can be represented by a uniformly 
convergent Neumann series. 

Indeed, let r, r1 and ra be the spectral radii of the operators x(x)@' x(x)[Q"-QQI and 

x(x)Q,x~S where Q is the value of the operator Q" when o=O,xer 5, Using the mean value 

theorem we find, by direct computation, that 

and from this we find that rX(x(x)M1, x E ti. 

The operator 2(2-a,)-'9 was investigated in /6/ where it was shown that its spectral 

radius is not greater than unity. Taking into account the boundedness of the operator Q on 

C(S), we obtain z,<i, x=5. Since r<rXi-r,, putting hi= i--r* we arrive at the assertion 

made above, since in this case the series 

2 rxfx)o"l", x=B* 
n=O 

converges absolutely. 
We note that the restriction %M = Ip, is not essential, since when h,Nf&, the problem 

reduces to a sequence of problems for Eq.Cl.2) with ZSD, with the unrestricted recurrent 

terms belonging to the space c (DL)/6/. However, in this case the expressions for the 

scattering amplitudes become much more complex. 

In particular, the zeroth approximation is given by the equation 

"o(x)=x(x)u"(x), XED), 

and we write the first terms of the Neumann series for the scattering amplitude (l-4), (1.5) 

in the form 

f,A (a; 1, v) = 2A~&9’ 5 exp [iw (qA, YH dy, A = .G T (1.7) 
D 

When o-to, we obtain from (1.7) 

flA N fA sz 2An*aA’@W 

where V is the volume of the scatterer. 
Inequality (1.6) in fact forces us to consider the inverse problem in the low-frequency 

domain in which, generally speaking, it is not easy to ensure that the method of solution 

given below is powerful enough. We shall therefore assume that inequality (1.61 holds, not 

because the wave number is small, but because of the other characteristic parameters of the 

problem. Namely, let the equation of the surface S be written in cylindrical coordinates 

r,cp,t in the form 

F-8F(t,q3f, o<t<U. o<Cp,<b 
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where the function P(t, cp) is assumed to be sufficiently smooth on the surface of the unit 

cylinder G = (0 < tQ a, 0 < cp < 2n, r = i}, 8 >0 is a small parameter. 
Then we have, from (1.71, the following expression for the principal terms of the uniform 

asymptotic representation of the scattering amplitudes in terms of the parameter oAaa: 

IA (0; 1, v) = Ap (0_4e)” S F (t, cp)exp [ion)lsAf] dt dcp (A =L,T) (W 
G 

We also have the following estimate for the surfaces of class c*: 

IfA- f% I <e'Ww8)) [s(i + WA) + sone"~] 

where c1 (i= 1,2,3) are constants independent of o and e. 

The estimate (1.9) can be proved directly from the inequalities 

(1.9) 

IfA - fl* I< CiO* max 
XES 

I(+Z’+Q+] (.)I(! ds)%“s 

where r is the unit operator, and subsequent application of the mean-value theorem. 

Relations (1.8) represent the starting relations for formulating the inverse problem 

consisting of determining the function sF 0, cp). 

2. Let the region G and the orientation of the surface S relating to the vector 1 be 

both known. Further, let the function fL(o;l,v) or f*(w;l,v) be known in a fixed direction 

in space, at a discrete setof frequencies 0 = aI, a,,..., ON, such that inequality (1.6) is 

not violated. Then we obtain from (1.8) a system of integral Fredholm equations of the first 

kind for the function [eF(t, cp)]" 

(km = ~2, m=i,2,...,N) 

where the index A is fixed. 

Analysing relations (1.8) we find that the direction of the vector IL is the same as 

that of the vector v, and the vector fT is orthogonal to fL. Then, if the vector v tracks 
a unit sphere, the vector fT will form a smooth vector field tangent to the sphere and will 

vanish at least in the directions v=*l. Therefore the field fL will predominate in a 
direction close to the direction of backward scattering. Since this domain of angles of 
observation is the most preferable one from the practical point of view, we shall henceforth 

assume that A = L and omit the index L. 

Now let the vectors 1 and v be fixed, so that Q# 0. We shall assume without loss of 
generality that fla# 0. Then from (2.1) it follows that in order to determine the function 

eF(t, 'p) in terms of fa(~,,,; 1,~) (m = 1,2, . . ..N. . __) uniquely, we must introduce the a priori 
information P (t, cp) = F (t), since we cannot determine uniquely a function of two variables in 
terms of a function of a single variable. 

Then from (2.1) we obtain 

5 p(t)exp(%t)dt=y,, m=l,S!...,N,... (2.2) 
0 

a m = kmxw p (t) = IeF (f)P. ym = fr (o,,,; 1, v)(~JL~&,,~)-~ 

It can be shown /4/ that if the numbers a,(m = 1,2, . . ..N. N+ cw) for a set of 
condensation point at zero, i.e. if the corresponding wave lengths have a condensation point 
a infinity, then the solution of system (2.2) is unique in the space L,[O,al and its normal 

pseudosolution in this space can be written, for any finite N, in the form 

pN(t)'a"$d,Gxp(--ichl) (2.3) 

with the coefficients A,, satisfying the linear algebraic system 

jl A&m = I’,,,, m=i,2,...,N (2.4) 

(G, = {exp [ia (a, - a,)1 - i}[ia (a,, - %)I-‘) 

Let G (gI, . . ., f?N)(i% = Gxp (i%& n = 1. 2, . . ., N) be the determinant of the system (2.4). 
Since G (g,, . . ., gN) is the Gram determinant and system g,, g,,...,gN is linearly independent, 
we have /7/ 
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Here G (gr, . . ., gN) = 1 if and only if a,,,,, = 0 (n f m, n, & = 1, 2, . . ., N). Therefore, the 
solution of system (2.4) is unique and the quantity G (g,,..., gN)’ can be arbitrarily small 
when N-tm. This implies that the solution of the system of integral Eqs.(2.2), as well as 
the solution of system (2.4), both need to be regularized when N-too. With this in mind, 
we shall consider a family of operators RN, depending on an integer-valued parameter and 
defined as follows: RN~ = PN, whose PN is given by (2.31 and f = (fr, . . ..fN) (fn=f3(un; 1, v), 
n = I, . . ., IV). Since /4/ IIp--p~Uf_+0 and the solution of system (2.4) is unique, it 
follows that the family of linear operators R N is the regularizing set for the equations 
(2.2) /8/. Since the components of the vector I are obtained by observation, it follows that 
the quantities ~=(a = 1.2, . . ..N. . ..) will contain a certain amount of noise, with the additive 
components 6, distributed according to one rule or another. In order for the solution (2.3) 
to be stable for small variations in the initial data &, the number N taken must be matched 
to the level of error within which the components &,(n = 1,2,...,N,...) are specified. 

By virtue of the triangle inequality we have 

and 

Here 4, is the cofactor of the element a,,, of the determinant G (gl,...,g~), and the 
bar denotes the complex conjugate. 

Since the second term on the right-hand side of inequality (2.5) tends to zero as N+ m, 
by choosing N = N(6) so that sf,(N@))+O as S-+0 and N-too:, we can obtain /l, 8/ 
&~&+p (t) in the metric of the space ._& [O, U]. This condition is satisfied, for example, 
by the number N(6)= max {N :B(N),<c&~}, where c> O,O< q< 1. 

Thus the use of a priori information concerning the properties of the scatterer 
introduced above, enables an algorithm to be compiled for obtaining an approximate solution 
of the inverse problem in question, and also enables its Tikhonov correctness to be investigated 
/8/. 
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